4S-fluorination of ProB29 in insulin lispro slows fibril formation

Journal of Biological Chemistry(2024)

引用 0|浏览2
暂无评分
摘要
Recombinant insulin is a life-saving therapeutic for millions of patients affected by diabetes mellitus. Standard mutagenesis has led to insulin variants with improved control of blood glucose; for instance, the fast-acting insulin lispro contains two point mutations that suppress dimer formation and expedite absorption. However, insulins undergo irreversible denaturation, a process accelerated for the insulin monomer. Here we replace ProB29 of insulin lispro with 4R-fluoroproline, 4S-fluoroproline, and 4,4-difluoroproline. All three fluorinated lispro variants reduce blood glucose in diabetic mice, exhibit similar secondary structure as measured by circular dichroism, and rapidly dissociate from the zinc- and resorcinol-bound hexamer upon dilution. Notably, however, we find that 4S-fluorination of ProB29 delays the formation of undesired insulin fibrils that can accumulate at the injection site in vivo, and can complicate insulin production and storage. These results demonstrate how subtle molecular changes achieved through non-canonical amino acid mutagenesis can improve the stability of protein therapeutics.
更多
查看译文
关键词
Non-canonical amino acid,fluoroproline,proline,insulin,insulin lispro,fibrillation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要