Expression Levels Of The Gamma-Glutamyl Hydrolase I Gene Predict Vitamin B-9 Content In Potato Tubers

AGRONOMY-BASEL(2019)

引用 13|浏览12
暂无评分
摘要
Biofortification of folates in staple crops is an important strategy to help eradicate human folate deficiencies. Folate biofortification using genetic engineering has shown great success in rice grain, tomato fruit, lettuce, and potato tuber. However, consumers' skepticism, juridical hurdles, and lack of economic model have prevented the widespread adoption of nutritionally-enhanced genetically-engineered (GE) food crops. Meanwhile, little effort has been made to biofortify food crops with folate by breeding. Previously we reported >10-fold variation in folate content in potato genotypes. To facilitate breeding for enhanced folate content, we attempted to identify genes that control folate content in potato tuber. For this, we analyzed the expression of folate biosynthesis and salvage genes in low- and high-folate potato genotypes. First, RNA-Seq analysis showed that, amongst all folate biosynthesis and salvage genes analyzed, only one gene, which encodes gamma-glutamyl hydrolase 1 (GGH1), was consistently expressed at higher levels in high- compared to low-folate segregants of a Solanum boliviense Dunal accession. Second, quantitative PCR showed that GGH1 transcript levels were higher in high- compared to low-folate segregants for seven out of eight pairs of folate segregants analyzed. These results suggest that GGH1 gene expression is an indicator of folate content in potato tubers.
更多
查看译文
关键词
folate, regulation, potato
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要